
1

Fabrication Security and Trust of Domain-Specific ASIC Processors

Michael Vai, Karen Gettings, and Theodore Lyszczarz
MIT Lincoln Laboratory

Lexington, MA, USA
{mvai, karen.gettings, tedl}@ll.mit.edu

Abstract
This paper describes our experience developing techniques to
protect embedded intellectual property (IP) while an ASIC is
being fabricated in an untrusted foundry. We created a
customizable, high performance, domain-specific ASIC
processor architecture, which we showed to be effective in
protecting IP and mitigating the expense and inflexibility
associated with using ASIC technology. Using an ASIC Fast
Fourier Transform (FFT) accelerator as a test case, we have
investigated various obfuscation options and their practicality
in ensuring the trust and security of the processor when it is
fabricated. The result is a processor architecture that
incorporates split fabrication, configurable switch arrays and
fabrics, programmable controllers, and configurable functional
kernels. We have introduced a quantitative metric to gauge the
effectiveness of application obfuscation for a domain-specific
processor during fabrication.

Keywords—Split Fabrication; Configurability; Programmability;
Untrusted Fabrication; ASIC Processor; IP Protection;
Obfuscation.

I. INTRODUCTION
Embedded systems can be built with General

Programmable Processors (GPPs), Field Programmable Gate
Arrays (FPGAs), Application Specific Integrated Circuits
(ASICs), or a combination of them. As each of these
technologies provides a unique level of capability and
flexibility, choosing the right one to meet the performance
requirement without breaking SWaP (size, weight, and
power) budget is critical in the development of embedded
systems.

Figure 1 represents a summary result from our long-term
survey of defense-related embedded applications, which
shows the potential volume efficiency (e.g., computations per
liter) and power efficiency (e.g., computations per watt) of
three technologies. As described by Moore’s Law, these
values change as semiconductor technology advances, thus
they are normalized in Figure 1 using the corresponding
FPGA capability as a baseline. A variety of representative
defense applications are placed on the chart according to their
requirements.

Besides performance, embedded system developers must
also consider design and manufacturing complexity and cost,
availability and usability of fabrication technology, and the
protection of critical intellectual property (IP) embedded in

the design. For example, an ASIC processor potentially has a
10-1,000X performance advantage over its FPGA and GPP
counterparts, but it is expensive and inflexible. Most of all,
ASIC developers must mitigate the risks incurred in
untrusted fabrication, which include IP theft, over-production
for gray/black market sales, and unauthorized alteration. This
paper describes the risk assessment and mitigation in our
creation of a domain-specific ASIC processor.

Figure 1: Embedded processing technology capabilities with the
efficiency values normalized to account for Moore’s Law (UAV:
unmanned aerial vehicle; SIGINT: signals intelligence)

The rest of the paper is organized as follows. Section II
explains our project of creating a domain-specific ASIC
processor. Section III discusses a threat model for fabricating
these processors in an untrusted foundry and an investigation
of applicable obfuscation techniques. We then describe two
domain-specific processor implementation variants for
different usage models and explain the reasoning for our
choices of obfuscation techniques. We introduce in Section
IV a quantitative obfuscation metric that we have used to
guide and assess our design. We then analyze, for each of the
domain-specific processor variants, its performance benefits
and its effectiveness in obfuscating critical IPs. We finish by
discussing potential mitigations for identified residual
vulnerabilities. Section V concludes this paper by
summarizing our lessons learned from this project and
suggests a few research directions.

II. DOMAIN-SPECIFIC ASIC PROCESSORS
As Figure 1 has shown, the ASIC is indispensable in

certain application areas, such as advanced signal processing
embedded in small platforms. Besides the potential of higher
performance than FPGA and GPP, the possibility of
fabricating special functions (e.g., analog circuits, non-
volatile memories, etc.) and digital functions on the same
chip is very attractive in our embedded applications.

___ ______ ______ ______ ______ ______ ___

This work was sponsored by the Assistant Secretary of Defense for Research
& Engineering under Air Force Contract #FA8721-05-C-0002. Opinions,
interpretations, recommendations and conclusions are those of the authors and
are not necessarily endorsed by the United States Government. Distribution
Statement A. Approved for public release: Distribution unlimited.

2

Nevertheless, designers shy away from ASIC processors
because they are expensive, inflexible, and take a long time
to fabricate. Unlike commercial products (e.g., smart
phones), our defense-related applications do not have the
production quantity to amortize ASIC design costs.
Furthermore, with the increasingly high cost of trusted
foundries, more and more advanced semiconductor processes
will only be available at untrusted foundries. Therefore, the
technology protection concerns for ASICs will continue to
grow with the lack of trusted manufacturing and the
proliferation of inexpensive reverse engineering capabilities.

We thus have pursued a design methodology that produces
domain-specific processors with close to ASIC performance,
and we have addressed the other issues of using ASICs, such
as their long fabrication time, high costs, and the need for IP
security. Our approach is applicable to a broad class of
defense-related applications (e.g., synthetic aperture radars)
that depend on a small set of signal processing kernels, as
illustrated in Figure 2. Note that these kernels must be
configurable to support the parameters required by a wide
range of target applications.

Figure 2: Defense applications are built with a few processing
functions and kernels (GMTI: ground moving target indication;
AMTI: airborne moving target indication; SAR: synthetic
aperture radar; SIGINT: signals intelligence; EW/ESM:
electronic warfare/electronic support measures; Comm.:
communications)

The domain-specific ASIC processors under development
are System-on-Chips (SoCs) consisting of configurable
kernels interconnected with configurable fabrics and
controlled by programmable processors. Other components
such as analog-to-digital converters (ADCs), digital-to-
analog converters (DACs), and memories can also be
included as required by a target application domain. Figure 3
illustrates an example of such a domain-specific processor,
which can be customized for individual applications.

The configurable kernels (FIR, FFT, PPF, PP, and QR)
deliver the ASIC performance needed for the applications.
The algorithm (i.e., the so-called secret sauce) of a specific
application will be defined by kernel configurations and
connectivity as well as by the sequence of operations and data
flow. In our design, the connectivity is provided by the
configurable interconnection fabric and the operations are
controlled by the programmable processor(s). This hardware-
for-performance and software-for-flexibility model has been
used successfully on a number of applications. For example,
in the synthesizable cryptographic and key management
processor described in [1], all cryptographic kernels have

been implemented in hardware for high performance while
the cryptographic protocols were implemented by software in
a microcontroller for flexibility.

Figure 3: Example domain-specific customizable processor
architecture (ADC: analog-to-digital converter; DAC: digital-
to-analog converter; FIR: finite impulse response filter; FFT:
fast Fourier transform; PPF: polyphase filter; PP: partial
product; QR: QR matrix decomposition; PUF: physical
unclonable function)

A security coprocessor and a physical unclonable function
(PUF) are included in the architecture for in-field protection.
The details of their operation (e.g., providing secure boot,
root-of-trust, and encryption of configuration) were
described in [2]. In this paper, we focus on the following
question. How do we architect a domain-specific processor
to protect application details when it is fabricated in an
untrusted manufacturing facility?

III. IMPLEMENTATION FOR UNTRUSTED FABRICATION
Most circuit obfuscation research reported in literature

takes a bottom-up approach, in which the obfuscation
techniques are studied and/or assessed for general-purpose
uses, without considering their mission and application
specific roles, e.g., [3][4]. In addition, many of the studies are
performed using low complexity benchmarks (e.g., ISCAS85
and ISCAS89) [5]. These studies have apparently been
contributing to the development of a knowledge foundation.
However, they offer very little insight into the practicality of
various obfuscation techniques in a mission or application
where decision makers would need to know: which
obfuscation techniques can be used, to what extent, what is
the risk, and what are the mitigations.

We have taken a “top-down” study approach and use
mission and application requirements to drive the system
design. For a domain of applications, how do we select
obfuscation techniques to mitigate the risk of reverse
engineering and repurposing during fabrication? Also, what
is the impact on performance, area, power, and cost? The
ultimate objective is to develop this knowledge and provide
designers with a well-thought-out, multi-dimensional design
space to ensure fabrication security and trust.

In order to provide a concrete example to drive our
analysis, we decided to implement one of the computational
kernels shown in Figure 3. Specifically, we chose to focus
on a 1 million (1M) point FFT ASIC kernel. Due to its wide
use in our signal processing applications, an FFT, in
particular a large FFT, is a reasonable representative kernel
in our domain-specific processors. We decided to implement
the so-called sparse FFT (SFFT) architecture, which
leverages the fact that frequency sparse signals can be

3

represented by a few non-zero Fourier coefficients [6]. The
functional details of this FFT architecture were previously
reported in [7]. This paper discusses its security and trust
during fabrication.

The FFT kernel was first prototyped with an FPGA to
establish a baseline for performance evaluation. In addition,
we designed and fabricated an ASIC implementation in a
180-nm CMOS technology; see Figure 4. Compared with the
FPGA version, the ASIC kernel achieved a 10X
improvement in throughput at merely 10% of the power
consumption, thereby achieving a 100X power efficiency
gain. This supports our decision to develop domain-specific
ASIC processors. In addition to 1M point sparse FFT, the
kernel can be configured to perform 4 regular FFT
operations, i.e., 256 point, 1K point, 4K point, and 16K point.
Up to two smaller (i.e., 256 point and 1K point) FFTs can be
configured to operate concurrently in the architecture.

Figure 4: 1M point FFT ASIC kernel (as a standalone 1 cm2
chip) and its testbed

A. Threat Model
The threat model reflects the focus of our study, which is

fabrication security and trust for defense-related processors.
In our application domains, one of the top concerns is the
possibility of reverse engineering of system capability from
the embedded processor. For example, the resolution of a
sensor system may be inferred from the size of its FFT
operations, which is another reason we have studied the
obfuscation of an FFT. An equally important objective is the
protection of advanced algorithms (i.e., the secret sauce)
embedded in the IC, which can be expressed as a series of
computational steps with signal processing kernels.

In contrast, the designs of kernel accelerators, such as FFT,
FIR, QR, etc., are often well developed and available as
textbook examples, in many cases through either open source
archives or commercial IPs. We thus focused on obfuscating
their application specific parameters (e.g., FFT sizes, FIR
filter coefficients, etc.) during fabrication to avoid revealing
application capabilities. The system level kernel connectivity
and orchestration for operation (e.g., a process for adaptive
beamforming) must also be protected from the access by an
untrusted manufacturer.

Unauthorized modifications such as the insertion of Trojan
circuits that affect operations and/or reliability are also a
major concern. Overproduction for gray/black market sales is
also a threat.

B. Mitigation
The purpose of design obfuscation is to address the listed

security concerns in light of the information resources

supplied to the foundry. Our study has focused on the
protection of system capabilities and secret sauce.
Obfuscation also helps with mitigating the threats of
unauthorized modification and overproduction, which will be
discussed in Section IV as residual vulnerabilities.

The obfuscation technologies considered in our study are
split fabrication, logic obfuscation, configurable
connectivity, configurable functions, and programmable
operations.

C. Split Fabrication
Our original plan considered only split fabrication [8] in

which an untrusted foundry is tasked with the so-called front
end process of fabricating the transistors and the first level of
metal. A second, trusted foundry, completes the back end
fabrication of the remaining layers of metal interconnect.

We planned to use only upper metal layers in the back end
process to customize a domain processor for specific
applications. This approach would provide application
flexibility, quick-turn-around customization, and obfuscation
of functionality. However, our analysis and simulation
quickly showed that this scheme of solely depending on split
fabrication incurs serious design complexity and
performance penalties. The widths and pitches of upper metal
layer interconnections are significantly more restrictive than
their lower layer counterparts. For example, in 45 nm CMOS,
the 9th and 10th metal layers have a pitch of 1,600 nm, while
the 2nd and 3rd metal layers have a pitch of 140 nm. In addition
to coarser interconnect granularity, the wider upper layer
metal interconnects have higher capacitance, and this causes
increased delays and requires the kernels to have larger
drivers. In addition, the efficacy of the obfuscation will
depend on where the fabrication process is split. Limiting the
untrusted foundry to fabricating the transistors and first layer
of metal results in a strong obfuscation, but it requires the
trusted foundry to fabricate several layers of dense metal and
this will be impractical unless the trusted foundry supports
advanced fabrication. On the other hand, fabricating all the
dense layers at the untrusted foundry reveals too much of the
design.

Other issues are the complexity of coordinating the
processes, increased costs, lack of availability of split
fabrication multiproject runs, and the potential speed and area
penalties caused by routing critical signals in the upper level
metals for the purpose of obfuscation. We did not undertake
a quantitative evaluation of the return-on-investment on split
fabrication, but instead relied on information available in
literature, e.g., [9]-[13]. Based on these considerations, we
developed the modified split fabrication architecture
described below.

Instead of using multiple top-level metal layers to directly
interconnect the kernels, we created (in the front end process)
dedicated routing lanes embedded between kernels using the
dense local and intermediate metal layers. This concept is
shown in Figure 5. Pass-transistor switches controlled by
upper level metal layer connections (to be made in the back
end process) are used to physically complete the routing
connections. With this structure, the back end process will

4

configure and connect the kernels indirectly by selectively
turning on switches. All the high-speed signals are confined
to the lower metal layers to maximize performance. The area
overhead of these routing lanes scales with the footprints of
kernels they are connecting, but in general the routing will be
negligible since the kernels are typically quite large. For the
FFT design shown in Figure 4, the switches represented only
1% of the total chip area. This switch-based customization
scheme is easier to design and has significant area and delay
advantages over the original upper metal configuration
scheme.

Figure 5: Configurable routing structure that overcomes the
upper level metal routing challenges in split fabrication

An alternative split fabrication approach is to use 2.5D and
3D integration techniques that allow the integration of two or
more chips either by direct wafer bonding or advanced
packaging, see [14][15]. 2.5D typically refers to the use of
silicon interposers between a substrate and components,
where the interposer has through-silicon vias (TSVs)
connecting the metallization layers on its upper and lower
surfaces, while 3D IC connect components directly through
TSVs, without the use of interposers [15]. A range of vertical
integration approaches can be implemented by bonding
together full wafers, stacking individual circuit die, or
employing hybrid die-to-wafer and reconstituted wafer
techniques [16]. This approach is an attractive way to
integrate two or more incompatible fabrication technologies,
e.g. a low-noise RF tier with a high-speed digital tier. It can
provide obfuscation if the circuit tiers are fabricated in
different foundries, and there has been some work on
partitioning guidelines and quantitative metrics of
effectiveness [17]. There is opportunity for further work in
this area, but we chose not to pursue 3D integration due to
resource constraints on the current phase of this project.

The most significant hindrance to the split fabrication
approaches is that relevant design tools are, if available at all,
primitive and immature. This concern has eventually limited
our use of split fabrication in our design.

D. Logic Obfuscation
Logic obfuscation is popular in the literature, e.g., [10][11].

In these active obfuscation techniques, the netlist for the
design is altered to obfuscate the logic and to accommodate
special circuitry that activates the logic function of the
device. The circuit is activated using some type of firmware
that is installed in a trusted environment after IC fabrication.

Prior to activation, the chip is resilient against reverse
engineering, since the chip is “incomplete” without the
necessary activation firmware. Active obfuscation also

removes the economic incentive for overproduction, since
the chips will not function without activation. Continued
protection of the design in the field requires protecting the
firmware used in the activation process.

As we explained in Section III.A, we are less concerned
with revealing the internal logic of the kernels, since these
represent textbook designs. Furthermore, there is a lack of
mature CAD tools that can obfuscate the circuit and evaluate
the efficacy of the logic obfuscation. For these reasons, we
decided not to implement logic obfuscation in this system.
As the tool infrastructure matures, we will revisit this
decision. We did leverage the concept of circuit activation as
a means of protection, which we now describe in the next
section.

E. Configurability and Programmability
The benefits and costs of implementing function

obfuscation via circuit configurability and programmability
are exemplified in the FPGA and GPP. At fabrication time,
an FPGA or a GPP effectively hides the in-system behavior
of the chip since the function of the part is controlled by the
embedded software/firmware, which is installed after
fabrication. In addition, they support updating in the field.
Configurability and programmability, as illustrated in Figure
3, are the dominant obfuscation techniques used in our design
to ensure the security of the design, system capabilities, and
algorithms.

The configurability and programmability aspects of our
design mitigate concerns of overproduction for gray/black
market sales. A chip is of limited value without its
customization firmware and instruction system architecture
documentation. Indeed, adversaries may consider the
uncommitted processor architecture to be a textbook case of
SoC architecture, in that case developing anew seems to be a
more attractive path than reverse engineering.

The software and firmware, which give the processor its
personality, must be protected from reverse engineering in
the field. A suitable security architecture that uses a
coprocessor and PUF has been developed [2].

F. Implementation
This domain-specific processor was designed to support a

broad range of development projects and is protected with
three obfuscation techniques: split-fabrication,
configurability, and programmability. In addition to this base
implementation, which we will refer to as the regular
implementation, we have also designed a variant of the
processor dedicated for prototyping. The variant will not
include split fabrication in order to increase its availability
and usability. In this case, instead of using the back-end metal
process to establish the connectivity between kernels, the
routing switches are designed to be controlled by firmware
loaded after fabrication.

The two implementations and their obfuscation techniques
are summarized in Table 1, which also includes an FPGA as
a baseline in the following discussion.

Table 1: Domain-specific processor implementations for
fabrication security and trust (S: split fabrication, C:

5

configurability, P: programmability, µP: microprocessor, DSP:
digital signal processor)

Implementation Lowest Level
Elements

S C P

FPGA

(Baseline)

LUTs, µPs, DSPs,
switch fabrics,

memories

X

X

Domain-Specific
Processor (Regular)

Domain optimized
kernels (FFTs, FIRs,

etc.), µPs, switch
fabrics, memories,

security coprocessors,
PUFs

X

X

X

Domain-Specific

Processor (Variant
for Prototyping)

X

X

In both cases, fabrication security and trust come from the

fact that the exact processor architecture remains undefined
until post fabrication. All kernels are designed to be
configurable by an application-specific bit stream, which
defines their parameters (e.g., FFT size and FIR coefficients).
The connectivity between the required kernels is also
customizable by a configurable switch fabric. Note that an
application may not require the participation of all kernels.
Furthermore, the data flow and operating steps are controlled
by software in the programmable processors, which is loaded
only after fabrication.

We have also made design choices that potentially can
enhance security and trust at fabrication. For example, as
shown in Figure 6, in the design of an FFT kernel, we have
created an array of 4K FFT modules and used configurable
switch arrays (SWs) to customize them into the sizes required
by the operation. This design is not optimal; the FFT sizes in
later stages could be made much smaller. This architectural
choice increases circuit area, but only incurs a minimal
penalty on performance. It has the advantages of modularity
and configurability. The fact that the design can be
configured into a 1M point sparse FFT or several different
regular FFTs not only increases usability, but also helps with
obfuscation. We will further discuss the relation between
configurability and obfuscation in Section IV.B.

Figure 6: Architecture choice to increase configurability for the
FFT kernel (SW: switch array)

IV. ASSESSMENT

A. Performance
Table 2 summarizes our assessment on the relative

performance merits of the two implementation options using
FPGAs as a baseline.

Table 2: Estimated relative performance merits of domain-
specific processor implementations comparing to an FPGA
(GOPS: billion operations per second)

Implementation

Application-
Specific

Fabrication
Latency

Relative

Performance
Merits

Remarks

FPGA

(Baseline)

None

Power (1X);
Throughput
(1X); Cost
(1X)

E.g., 10 W,
10 GOPs,
$5K/chip

Domain-Specific
Processor
(Regular)

~10 weeks
for upper

metallization

Power
(0.1X);
Throughput
(10-100X);
Cost
(40X for 1
wafer)

Cost may
reduce to
10X when

split
fabrication

has matured

Domain-Specific

Processor
(Variant for

Prototyping)

None

Power
(0.5X);
Throughput
(10X);
Cost (10X for
20 chips)

No special
processing

requirements

B. Security and Trust
When we set up the threat model, we mentioned that

protecting the design logic circuits is not a priority. The
manufacturer, by reverse engineering, can determine the
kernel function type (e.g., an FFT) from the GDSII netlist.
The security and trust are established on the assumption that
the kernel parameters (e.g., beyond its maximum FFT size),
the connectivity of kernels, and the algorithm for the
application remain undetectable by the manufacturer.

In order to quantitatively examine the effectiveness of our
design, we have introduced a quantitative metric, based on
Shannon entropy [18], to reflect the complexity of
determining target application capability and secret sauce by
reverse engineering. Our metric is an extension of the cell-
level metrics suggested in [19] to measure a design’s
effectiveness in countering functional and physical profiling.
The assessment is performed at the processor’s building
blocks (i.e., kernels, switch arrays, fabrics, etc.) by
determining the number of their possible variations. We
define the entropy of a block k as

𝐸𝐸𝑘𝑘 = 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑜𝑜 𝑘𝑘′𝑠𝑠 𝑣𝑣𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑙𝑙𝑛𝑛𝑠𝑠) 𝑛𝑛𝑣𝑣𝑣𝑣𝑠𝑠.
We believe that a building block with large entropy is

harder for an attacker to determine its use in an application.
For example, the function of a fixed kernel design (E = 0) can
be unambiguously determined. In contrast, it is more
challenging to guess how a highly configurable kernel, which
has a large E, will be used in an application. We have applied
this metric to our assessment of the domain-specific
processor in Table 3.

Table 3: Entropies of a domain-specific processor and its
building blocks

Entity Variables Entropy
FIR 20 32-bit taps 640
FFT 8 FFT settings 3
PPF 100 32-bit taps 3,200
PP Non-configurable 0

6

QR 15 matrix sizes 3.9
Fabric 5 by 5 Fully connected 6.9
Processor All of above 3,853.8

The quantitative relation between entropy and reverse

engineering complexity warrants further research, however,
we suggest that a design should aim at achieving high
entropy. For this paper, we have provided a qualitative
assessment of the effectiveness of obfuscation techniques
against potential threats, see Table 4.

Table 4: Effectiveness in mitigating fabrication threats

Effectiveness
Protecting Against

Regular

Variant

Revealing Application
Capability

High High

Revealing IP:
Algorithm

High High

Revealing IP: Logic None None
Function Modification Medium Medium
Reliability Reduction None None

Repurposing Medium Medium

C. Residual Vulnerabilities
Table 4 also exposes the residual vulnerabilities of a

domain-specific ASIC processor during an untrusted
fabrication. Obfuscation by itself does not prevent
unauthorized modification. This is not a unique ASIC
vulnerability as both FPGA and GPP need to deal with the
same threat. The prevention and detection of Trojan
insertions are beyond the scope of this paper, but we believe
that, without detailed knowledge of how its target application
works, the effort needed for application-specific Trojan
insertion increases.

Reproduction for repurposing is definitely possible, but
will require a significant reverse engineering effort to
determine how to target the “reproduced” processor to an
application. As discussed above, we believe that it is more
attractive to build a processor anew than to repurpose one by
reverse engineering.

V. CONCLUSION
This paper describes our experience designing a domain-

specific ASIC processor with obfuscation techniques to
protect application information from leaking during
fabrication. While obfuscation has been a popular research
area, we felt that the lack of mature tools and practical
assessment metrics is a major hindrance with using them.

Designers have long accepted the principle of
hardware/software co-design. A natural next step is to expand
the co-design methodology and include security and trust.
This requires a new generation of design tools and metrics to
assess the efficacy of obfuscation techniques in meeting
mission and application needs.

Last but not least, the traditionally used generic
obfuscation benchmarks should be augmented by
architecting a few non-obfuscated domain-relevant strawman
designs as baselines. These design baselines should facilitate

a better understanding of obfuscation techniques in
applications and missions.

REFERENCES
[1] D. Whelihan et al, “SHAMROCK: a synthesizable high assurance

cryptography and key management coprocessor,” MILCOM 2016.
[2] M. Vai et al, “Secure architecture for embedded systems,” IEEE

HPEC, 2015.
[3] R. P. Cocchi, J. P. Baukus, L. W. Chow and B. J. Wang, "Circuit

camouflage integration for hardware IP protection," 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-5.

[4] J. Rajendran, et al, “Security analysis of integrated circuit
camouflaging,” CCS '13 Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pp. 709-720.

[5] http://ddd.fit.cvut.cz/prj/Benchmarks/, accessed September 2016.
[6] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical

algorithm for sparse Fourier transform,” SODA, January 2012.
[7] K. Gettings, M. Burke, J. Muldavin, and M. Vai, “Coarse-grain

reconfigurable ASIC through multiplexer based switches,” IEEE
HPEC, 2015.

[8] IARPA Trusted Integrated Circuits BAA,
https://www.iarpa.gov/index.php/research-programs/tic/baa, accessed
September 2016.

[9] J. Rajendran, O. Sinanoglu and R. Karri, "Is split manufacturing
secure,” IEEE DATE, 2013.

[10] J. A. Roy, F. Koushanfar and I. L. Markov, "Ending piracy of
integrated circuits," in Computer, vol. 43, no. 10, pp. 30-38, Oct. 2010.

[11] R. S. Chakraborty and S. Bhunia, "HARPOON: an obfuscation-based
SoC design methodology for hardware protection," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 10, pp. 1493-1502, Oct. 2009.

[12] J. Rajendran, Y. Pino, O. Sinanoglu and R. Karri, "Security analysis of
logic obfuscation," Design Automation Conference (DAC), 2012, pp.
83-89.

[13] F. Imeson, A. Emtenan, S. Garg and M. Tripunitara, "Securing
computer hardware using 3D integrated circuit (IC) technology and
split manufacturing for obfuscation," Proceedings of the 22nd
USENIX Conference on Security (SEC'13), pp. 495-510.

[14] J. Michailos et al., "New challenges and opportunities for 3D
integrations," 2015 IEEE International Electron Devices Meeting
(IEDM), pp. 8.5.1-8.5.4.

[15] C. Maxfield, “2D vs. 2.5D vs. 3D ICs 101,” EE Times, 4/8/2012.
[16] M. Brunnbauer et al., “Embedded wafer level ball grid array (eWLB),”

2008 IEEE Electronics Manufacturing Technology Symposium
(IEMT), pp. 1-6.

[17] F. Imeson et al., “Securing computer hardware using 3D integrated
circuit (IC) technology and split manufacturing for obfuscation,” 22nd
USENIX Security Symposium, pp. 495-510.

[18] C. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, pp. 379-423, July-October 1948.

[19] M. Jagasivamni et al., “Split-fabrication obfuscation: metrics and
techniques,” pp. 7-12, IEEE HOST, 2014.

	RRFabrication Security and Trust of Domain-Specific ASIC Processors
	I. Introduction
	II. Domain-Specific ASIC Processors
	III. Implementation for Untrusted Fabrication
	A. Threat Model
	B. Mitigation
	C. Split Fabrication
	D. Logic Obfuscation
	E. Configurability and Programmability
	F. Implementation

	IV. Assessment
	A. Performance
	B. Security and Trust
	C. Residual Vulnerabilities

	V. Conclusion
	References

